summaryrefslogtreecommitdiff
path: root/userland/libc/tb/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'userland/libc/tb/sha1.c')
-rw-r--r--userland/libc/tb/sha1.c249
1 files changed, 249 insertions, 0 deletions
diff --git a/userland/libc/tb/sha1.c b/userland/libc/tb/sha1.c
new file mode 100644
index 0000000..90e4e2a
--- /dev/null
+++ b/userland/libc/tb/sha1.c
@@ -0,0 +1,249 @@
+//
+// Copyright (C) 2022-2023 by Anton Kling <anton@kling.gg>
+//
+// SPDX-License-Identifier: 0BSD
+//
+#include <tb/sha1.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#define SHA1_CONSTANT_H0 0x67452301
+#define SHA1_CONSTANT_H1 0xefcdab89
+#define SHA1_CONSTANT_H2 0x98badcfe
+#define SHA1_CONSTANT_H3 0x10325476
+#define SHA1_CONSTANT_H4 0xc3d2e1f0
+
+#define SHA1_CONSTANT_K1 0x5a827999
+#define SHA1_CONSTANT_K2 0x6ed9eba1
+#define SHA1_CONSTANT_K3 0x8f1bbcdc
+#define SHA1_CONSTANT_K4 0xca62c1d6
+
+void SHA1_Init(SHA1_CTX *ctx) {
+ // 6.1.1 SHA-1 Preprocessing
+
+ // 1. Set the initial hash value, H(0), as specified in Sec. 5.3.1
+ ctx->h[0] = SHA1_CONSTANT_H0;
+ ctx->h[1] = SHA1_CONSTANT_H1;
+ ctx->h[2] = SHA1_CONSTANT_H2;
+ ctx->h[3] = SHA1_CONSTANT_H3;
+ ctx->h[4] = SHA1_CONSTANT_H4;
+
+ ctx->len = ctx->active_len = 0;
+
+ memset(ctx->block, 0, BLOCK_BYTES);
+}
+
+uint32_t reverse_32(uint32_t _value) {
+ return (((_value & 0x000000FF) << 24) | ((_value & 0x0000FF00) << 8) |
+ ((_value & 0x00FF0000) >> 8) | ((_value & 0xFF000000) >> 24));
+}
+
+void pad_sha1_message(uint8_t *M, uint64_t l, uint64_t active_l,
+ uint8_t *block) {
+ memset(block, 0, 1024 / 8);
+ memcpy(block, M, active_l / 8);
+
+#define ARRAY_NUM(_loc) (((_loc) / 8) + !(0 == ((_loc) % 8)))
+
+ // 5. PREPROCESSING
+
+ // 5.1.1 SHA-1, SHA-224 and SHA-256
+
+ // Append the bit “1” to the end of the message
+ block[ARRAY_NUM(active_l)] = 1 << 7;
+
+ // followed by k zero bits, where k is the smallest, non-negative
+ // solution to the equation 'l + 1 + k \cong 448 mod 512'
+ int k;
+ uint64_t rest = (active_l + 1) % 512;
+ if (rest < 448)
+ k = 448 - rest;
+ else
+ k = 512 - rest + 448;
+
+ memset(block + ARRAY_NUM(active_l) + 2, 0x0, k / 8);
+
+ // Then append the 64-bit block that is equal to the number 'l' expressed
+ // using a binary representatio
+ uint32_t *final_32bit_block;
+ final_32bit_block = (uint32_t *)(block + active_l / 8 + k / 8 + 1);
+
+ *(final_32bit_block) = reverse_32(l >> 32);
+ *(final_32bit_block + 1) = reverse_32(l & 0xFFFFFFFF);
+}
+
+uint32_t sha1_f(uint8_t t, uint32_t x, uint32_t y, uint32_t z) {
+ if (t <= 19) {
+ // Ch(x,y,z)
+ return (x & y) ^ ((~x) & z);
+ }
+ if (t <= 39 || t >= 60) {
+ // Parity(x,y,z)
+ return x ^ y ^ z;
+ }
+ if (t <= 59) {
+ // Maj(x,y,z)
+ return (x & y) ^ (x & z) ^ (y & z);
+ }
+ return 0;
+}
+
+uint32_t sha1_get_k(uint8_t t) {
+ if (t <= 19)
+ return SHA1_CONSTANT_K1;
+ if (t <= 39)
+ return SHA1_CONSTANT_K2;
+ if (t <= 59)
+ return SHA1_CONSTANT_K3;
+ if (t <= 79)
+ return SHA1_CONSTANT_K4;
+ return 0;
+}
+
+uint32_t ROTL(uint32_t value, uint8_t shift) {
+ uint32_t rotated = value << shift;
+ uint32_t did_overflow = value >> (32 - shift);
+ return (rotated | did_overflow);
+}
+
+void add_block(SHA1_CTX *ctx, uint8_t *_block) {
+ uint32_t *block = (uint32_t *)_block;
+ for (size_t i = 0; i < 16; i++)
+ block[i] = reverse_32(block[i]);
+
+ uint32_t W[80];
+ uint32_t a, b, c, d, e;
+ uint32_t *M = block;
+
+ // 1. Prepare the message schedule, {Wt}:
+ for (size_t t = 0; t < 16; t++)
+ W[t] = M[t];
+
+ for (size_t t = 16; t < 80; t++) {
+ // ROTL(1)(W(t-3) ^ W(t-8) ^ W(t-16))
+ W[t] = ROTL((W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]), 1);
+ }
+
+ // 2. Initialize the five working variables, a, b, c, d, and e, with the
+ // (i-1)^(st) hash value:
+ a = ctx->h[0];
+ b = ctx->h[1];
+ c = ctx->h[2];
+ d = ctx->h[3];
+ e = ctx->h[4];
+
+ // 3. For t=0 to 79:
+ for (size_t t = 0; t < 80; t++) {
+ uint32_t T = ROTL(a, 5) + sha1_f(t, b, c, d) + e + sha1_get_k(t) + W[t];
+ e = d;
+ d = c;
+ c = ROTL(b, 30);
+ b = a;
+ a = T;
+ }
+
+ // 4. Compute the ith intermediate hash value H(i):
+ ctx->h[0] = a + ctx->h[0];
+ ctx->h[1] = b + ctx->h[1];
+ ctx->h[2] = c + ctx->h[2];
+ ctx->h[3] = d + ctx->h[3];
+ ctx->h[4] = e + ctx->h[4];
+}
+
+void SHA1_Final(SHA1_CTX *ctx, unsigned char *message_digest) {
+ uint8_t block[BLOCK_BYTES * 2] = {0};
+ pad_sha1_message(ctx->block, ctx->len * 8, ctx->active_len * 8, block);
+
+ add_block(ctx, block);
+
+ if (((ctx->active_len * 8 + 1) % 512) >= 448)
+ add_block(ctx, block + BLOCK_BYTES);
+
+ for (size_t i = 0; i < 5; i++)
+ ctx->h[i] = reverse_32(ctx->h[i]);
+
+ for (size_t i = 0; i < 5; i++)
+ memcpy(message_digest + sizeof(uint32_t) * i, &ctx->h[i], sizeof(uint32_t));
+}
+
+void SHA1_Update(SHA1_CTX *ctx, const void *data, uint64_t len) {
+ for (; len > 0;) {
+ size_t write_len = ((ctx->active_len + len) > BLOCK_BYTES)
+ ? (BLOCK_BYTES - ctx->active_len)
+ : len;
+
+ memcpy(ctx->block + ctx->active_len, data, write_len);
+ ctx->len += write_len;
+ ctx->active_len += write_len;
+ if (BLOCK_BYTES != ctx->active_len)
+ return;
+
+ add_block(ctx, ctx->block);
+ memset(ctx->block, 0, BLOCK_BYTES);
+ ctx->active_len = 0;
+
+ len -= write_len;
+ data = (const void *)((uintptr_t)data + write_len);
+ }
+}
+
+// https://www.rfc-editor.org/rfc/rfc2104
+#define BLOCK_SIZE 64
+void SHA1_HMAC(unsigned char *message, uint64_t message_len, unsigned char *key,
+ uint64_t key_len, uint8_t output[SHA1_LEN]) {
+ // This function can be presented as follows:
+ // H(K XOR opad, H(K XOR ipad, message))
+ //
+ // H : SHA1 hashing algorithm.
+ // K : Key that got shrunk/padded to block size.
+ // ipad : the byte 0x36 repeated B times
+ // opad : the byte 0x5C repeated B times.
+ // message : The input.
+
+ char o_key_pad[BLOCK_SIZE];
+ char i_key_pad[BLOCK_SIZE];
+
+ // (1) append zeros to the end of K to create a B byte string
+ // (e.g., if K is of length 20 bytes and B=64, then K will be
+ // appended with 44 zero bytes 0x00)
+ unsigned char hashed_key[SHA1_LEN];
+ if (key_len > BLOCK_SIZE) {
+ SHA1_CTX ctx;
+ SHA1_Init(&ctx);
+ SHA1_Update(&ctx, key, key_len);
+ SHA1_Final(&ctx, hashed_key);
+ key = hashed_key;
+ key_len = SHA1_LEN;
+ }
+
+ // (2) XOR (bitwise exclusive-OR) the B byte string computed in step
+ // (1) with ipad
+ // (5) XOR (bitwise exclusive-OR) the B byte string computed in
+ // step (1) with opad
+ memset(i_key_pad, 0x36, BLOCK_SIZE);
+ memset(o_key_pad, 0x5C, BLOCK_SIZE);
+ for (size_t i = 0; i < key_len; i++) {
+ i_key_pad[i] ^= key[i];
+ o_key_pad[i] ^= key[i];
+ }
+
+ // (3) append the stream of data 'message' to the B byte string resulting
+ // from step (2)
+ // (4) apply H to the stream generated in step (3)
+ SHA1_CTX first_ctx;
+ SHA1_Init(&first_ctx);
+ SHA1_Update(&first_ctx, i_key_pad, BLOCK_SIZE);
+ SHA1_Update(&first_ctx, message, message_len);
+ SHA1_Final(&first_ctx, output);
+
+ // (6) append the H result from step (4) to the B byte string
+ // resulting from step (5)
+ // (7) apply H to the stream generated in step (6) and output
+ // the result
+ SHA1_CTX second_ctx;
+ SHA1_Init(&second_ctx);
+ SHA1_Update(&second_ctx, o_key_pad, BLOCK_SIZE);
+ SHA1_Update(&second_ctx, output, SHA1_LEN);
+ SHA1_Final(&second_ctx, output);
+}