summaryrefslogtreecommitdiff
path: root/kernel/arch/i386/mmu.c
blob: ba7259bbf30cbb69acec344ee2f7e734a942bea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
#include <assert.h>
#include <cpu/arch_inst.h>
#include <log.h>
#include <math.h>
#include <mmu.h>
#include <random.h>

#define INDEX_FROM_BIT(a) (a / (32))
#define OFFSET_FROM_BIT(a) (a % (32))

PageDirectory *kernel_directory;
PageDirectory real_kernel_directory;
PageDirectory *active_directory = 0;

u32 num_allocated_frames = 0;

#define END_OF_MEMORY 0x8000000 * 15
u64 available_memory_kb;

u32 num_array_frames = 1024;
u32 tmp_array[1024];
u32 *tmp_small_frames = tmp_array;

#define KERNEL_START 0xc0000000
extern uintptr_t data_end;

void change_frame(u32 frame, int on);
int get_free_frames(u32 *frame, size_t num_frames);
int allocate_frame(Page *page, int rw, int is_kernel);
int mmu_allocate_kernel_linear_virtual_to_physical_mapping(void *rc, size_t n);

static int create_kernel_table(int table_index) {
  u32 physical;
  kernel_directory->tables[table_index] = (PageTable *)0xDEADBEEF;
  active_directory->tables[table_index] = (PageTable *)0xDEADBEEF;
  PageTable *new_table =
      (PageTable *)ksbrk_physical(sizeof(PageTable), (void **)&physical);
  if (!new_table) {
    return 0;
  }
  memset(new_table, 0, sizeof(PageTable));
  kernel_directory->tables[table_index] = new_table;
  kernel_directory->physical_tables[table_index] = physical | 0x3;
  if (!current_task) {
    active_directory->tables[table_index] = new_table;
    active_directory->physical_tables[table_index] = physical | 0x3;
    return 1;
  }
  for (process_t *p = ready_queue; p; p = p->next) {
    PageDirectory *pd = p->cr3;
    pd->tables[table_index] = new_table;
    pd->physical_tables[table_index] = physical | 0x3;
  }
  return 1;
}

void *ksbrk(size_t s, int enforce_linear) {
  uintptr_t rc = (uintptr_t)align_page((void *)data_end);

  if (!get_active_pagedirectory()) {
    // If there is no active pagedirectory we
    // just assume that the memory is
    // already mapped.
    data_end += s;
    data_end = (uintptr_t)align_page((void *)data_end);
    return (void *)rc;
  }
  // Determine whether we are approaching a unallocated table
  int table_index = 1 + (rc / (1024 * 0x1000));
  if (!kernel_directory->tables[table_index]) {
    if (!create_kernel_table(table_index)) {
      return NULL;
    }
    rc = (uintptr_t)align_page((void *)data_end);
  }
  data_end += s;
  data_end = (uintptr_t)align_page((void *)data_end);
  if (enforce_linear) {
    if (!mmu_allocate_kernel_linear_virtual_to_physical_mapping(
            (void *)rc, (data_end - (uintptr_t)rc))) {
      return NULL;
    }
  } else {
    if (!mmu_allocate_shared_kernel_region((void *)rc,
                                           (data_end - (uintptr_t)rc))) {
      return NULL;
    }
  }
  get_fast_insecure_random(rc, s);
  assert(((uintptr_t)rc % PAGE_SIZE) == 0);
  return (void *)rc;
}

void *ksbrk_physical(size_t s, void **physical) {
  void *r = ksbrk(s, 1);
  if (!r) {
    return NULL;
  }
  if (physical) {
    *physical = (void *)virtual_to_physical(r, 0);
  }
  return r;
}

u32 mmu_get_number_of_allocated_frames(void) {
  return num_allocated_frames;
}

Page *get_page(void *ptr, PageDirectory *directory, int create_new_page,
               int set_user) {
  uintptr_t address = (uintptr_t)ptr;
  if (!directory) {
    directory = get_active_pagedirectory();
  }
  address /= 0x1000;

  u32 table_index = address / 1024;
  if (!directory->tables[table_index]) {
    if (!create_new_page) {
      return 0;
    }

    u32 physical;
    directory->tables[table_index] =
        (PageTable *)kmalloc_align(sizeof(PageTable), (void **)&physical);
    if (!directory->tables[table_index]) {
      return NULL;
    }
    memset(directory->tables[table_index], 0, sizeof(PageTable));
    directory->physical_tables[table_index] =
        (u32)physical | ((set_user) ? 0x7 : 0x3);

    if (!set_user) {
      kernel_directory->tables[table_index] = directory->tables[table_index];
      kernel_directory->physical_tables[table_index] =
          directory->physical_tables[table_index];
    }
  }
  Page *p = &directory->tables[table_index]->pages[address % 1024];
  if (!p->present && !create_new_page) {
    return 0;
  }
  if (create_new_page) {
    p->present = 0;
    p->user = set_user;
  }
  return &directory->tables[table_index]->pages[address % 1024];
}

void mmu_free_pages(void *a, u32 n) {
  for (; n > 0; n--) {
    Page *p = get_page(a, NULL, PAGE_NO_ALLOCATE, 0);
    p->present = 0;
    (void)write_to_frame(p->frame * 0x1000, 0);
    a += 0x1000;
  }
}

u32 start_frame_search = 1;
int get_free_frames(u32 *frame, size_t num_frames) {
  size_t counter = num_frames;
  u32 i = start_frame_search;
  for (; i < INDEX_FROM_BIT(num_array_frames * 32); i++) {
    if (tmp_small_frames[i] == 0xFFFFFFFF) {
      continue;
    }

    for (u32 c = 0; c < 32; c++) {
      if ((tmp_small_frames[i] & ((u32)1 << c))) {
        counter = num_frames;
        continue;
      }
      start_frame_search = min(start_frame_search, i);

      counter--;
      if (0 == counter) {
        *frame = i * 32 + c - (num_frames - 1);
        return 1;
      }
    }
  }
  klog(LOG_WARN, "MMU: Ran out of free frames. TODO: free up memory");
  *frame = 0;
  return 0;
}

int write_to_frame(u32 frame_address, u8 on) {
  u32 frame = frame_address / 0x1000;
  if (INDEX_FROM_BIT(frame) >= num_array_frames) {
    return 0;
  }
  if (on) {
    int frame_is_used = (0 != (tmp_small_frames[INDEX_FROM_BIT(frame)] &
                               ((u32)0x1 << OFFSET_FROM_BIT(frame))));
    if (frame_is_used) {
      return 0;
    }
    num_allocated_frames++;
    tmp_small_frames[INDEX_FROM_BIT(frame)] |=
        ((u32)0x1 << OFFSET_FROM_BIT(frame));
  } else {
    num_allocated_frames--;
    start_frame_search = min(start_frame_search, INDEX_FROM_BIT(frame));
    tmp_small_frames[INDEX_FROM_BIT(frame)] &=
        ~((u32)0x1 << OFFSET_FROM_BIT(frame));
  }
  return 1;
}

PageDirectory *get_active_pagedirectory(void) {
  return active_directory;
}

PageTable *clone_table(u32 src_index, PageDirectory *src_directory,
                       u32 *physical_address) {
  PageTable *new_table =
      kmalloc_align(sizeof(PageTable), (void **)physical_address);
  if (!new_table) {
    return NULL;
  }
  memset(new_table, 0, sizeof(PageTable));
  PageTable *src = src_directory->tables[src_index];

  // Copy all the pages
  for (u16 i = 0; i < 1024; i++) {
    if (!src->pages[i].present) {
      new_table->pages[i].present = 0;
      continue;
    }
    u32 frame_address;
    if (!get_free_frames(&frame_address, 1)) {
      kmalloc_align_free(new_table, sizeof(PageTable));
      return NULL;
    }
    assert(write_to_frame(frame_address * 0x1000, 1));
    new_table->pages[i].frame = frame_address;

    new_table->pages[i].present |= src->pages[i].present;
    new_table->pages[i].rw |= src->pages[i].rw;
    new_table->pages[i].user |= src->pages[i].user;
    new_table->pages[i].accessed |= src->pages[i].accessed;
    new_table->pages[i].dirty |= src->pages[i].dirty;
  }

  // Now copy all of the data to the new table. This is done by creating a
  // virutal pointer to this newly created tables physical frame so we can
  // copy data to it.
  for (u32 i = 0; i < 1024; i++) {
    // Find a unused table
    if (src_directory->tables[i]) {
      continue;
    }

    // Link the table to the new table temporarily
    src_directory->tables[i] = new_table;
    src_directory->physical_tables[i] = *physical_address | 0x3;
    PageDirectory *tmp = get_active_pagedirectory();
    switch_page_directory(src_directory);

    // For each page in the table copy all the data over.
    for (u32 c = 0; c < 1024; c++) {
      // Only copy pages that are used.
      if (!src->pages[c].present) {
        continue;
      }

      u32 table_data_pointer = i << 22 | c << 12;
      u32 src_data_pointer = src_index << 22 | c << 12;
      memcpy((void *)table_data_pointer, (void *)src_data_pointer, 0x1000);
    }
    src_directory->tables[i] = 0;
    src_directory->physical_tables[i] = 0;
    switch_page_directory(tmp);
    return new_table;
  }
  ASSERT_NOT_REACHED;
  return 0;
}

PageDirectory *clone_directory(PageDirectory *original) {
  if (!original) {
    original = get_active_pagedirectory();
  }

  u32 physical_address;
  PageDirectory *new_directory =
      kmalloc_align(sizeof(PageDirectory), (void **)&physical_address);
  if (!new_directory) {
    return NULL;
  }
  memset(new_directory, 0, sizeof(PageDirectory));
  if (!new_directory) {
    return NULL;
  }
  u32 offset = (u32)new_directory->physical_tables - (u32)new_directory;
  new_directory->physical_address = physical_address + offset;
  assert(
      new_directory->physical_address ==
      (uintptr_t)virtual_to_physical((uintptr_t)new_directory + offset, NULL));

  for (int i = 0; i < 1024; i++) {
    if (!original->tables[i] && !kernel_directory->tables[i]) {
      new_directory->tables[i] = NULL;
      new_directory->physical_tables[i] = (u32)NULL;
      continue;
    }

    // Make sure to copy instead of cloning the stack.
    if (i >= 635 && i <= 641) {
      u32 physical;
      new_directory->tables[i] = clone_table(i, original, &physical);
      if (!new_directory->tables[i]) {
        mmu_free_pagedirectory(new_directory);
        return NULL;
      }
      new_directory->physical_tables[i] =
          physical | (original->physical_tables[i] & 0xFFF);
      continue;
    }

    if (original->tables[i] == kernel_directory->tables[i] || i > 641) {
      if (original->tables[i]) {
        assert(kernel_directory->tables[i]);
      }
      new_directory->tables[i] = kernel_directory->tables[i];
      new_directory->physical_tables[i] = kernel_directory->physical_tables[i];
      continue;
    }

    u32 physical;
    new_directory->tables[i] = clone_table(i, original, &physical);
    if (!new_directory->tables[i]) {
      mmu_free_pagedirectory(new_directory);
      return NULL;
    }
    new_directory->physical_tables[i] =
        physical | (original->physical_tables[i] & 0xFFF);
  }

  return new_directory;
}

int mmu_allocate_kernel_linear_virtual_to_physical_mapping(void *rc, size_t n) {
  size_t num_pages = align_page(n) / PAGE_SIZE;

  u32 start_frame;
  if (!get_free_frames(&start_frame, num_pages)) {
    goto mmu_allocate_shared_kernel_region_error;
  }

  for (size_t i = 0; i < num_pages; i++) {
    Page *p = get_page((void *)(rc + i * 0x1000), NULL, PAGE_ALLOCATE, 0);
    if (!p) {
      goto mmu_allocate_shared_kernel_region_error;
    }
    assert(!p->present);
    p->present = 1;
    p->rw = 1;
    p->user = 0;
    p->frame = start_frame + i;
    assert(write_to_frame(p->frame * 0x1000, 1));
  }
  flush_tlb();
  return 1;
mmu_allocate_shared_kernel_region_error:
  mmu_free_address_range(rc, n, NULL);
  return 0;
}

int mmu_allocate_shared_kernel_region(void *rc, size_t n) {
  size_t num_pages = n / PAGE_SIZE;
  for (size_t i = 0; i <= num_pages; i++) {
    Page *p = get_page((void *)(rc + i * 0x1000), NULL, PAGE_ALLOCATE, 0);
    if (!p) {
      goto mmu_allocate_shared_kernel_region_error;
    }
    if (!p->present || !p->frame) {
      if (!allocate_frame(p, 0, 1)) {
        goto mmu_allocate_shared_kernel_region_error;
      }
    }
  }
  flush_tlb();
  return 1;
mmu_allocate_shared_kernel_region_error:
  mmu_free_address_range(rc, n, NULL);
  return 0;
}

void mmu_remove_virtual_physical_address_mapping(void *ptr, size_t length) {
  size_t num_pages = (uintptr_t)align_page((void *)length) / PAGE_SIZE;
  for (size_t i = 0; i < num_pages; i++) {
    Page *p = get_page(ptr + (i * PAGE_SIZE), NULL, PAGE_NO_ALLOCATE, 0);
    if (!p) {
      return;
    }
    p->frame = 0;
    p->present = 0;
  }
}

void *mmu_find_unallocated_virtual_range(void *addr, size_t length) {
  addr = align_page(addr);
  // Check if the pages already exist
  for (size_t i = 0; i < length; i += 0x1000) {
    if (get_page(addr + i, NULL, PAGE_NO_ALLOCATE, 0)) {
      // Page already exists
      return mmu_find_unallocated_virtual_range(addr + 0x1000, length);
    }
  }
  return addr;
}

int mmu_allocate_region(void *ptr, size_t n, mmu_flags flags,
                        PageDirectory *pd) {
  pd = (pd) ? pd : get_active_pagedirectory();
  size_t num_pages = n / 0x1000;
  for (size_t i = 0; i <= num_pages; i++) {
    Page *p = get_page((void *)(ptr + i * 0x1000), pd, PAGE_NO_ALLOCATE, 0);
    if (p && p->present) {
      p->rw = (flags & MMU_FLAG_RW);
      p->user = !(flags & MMU_FLAG_KERNEL);
      continue;
    }
    p = get_page((void *)(ptr + i * 0x1000), pd, PAGE_ALLOCATE, 1);
    if (!p) {
      goto mmu_allocate_region_error;
    }
    int rw = (flags & MMU_FLAG_RW);
    int kernel = (flags & MMU_FLAG_KERNEL);
    if (!allocate_frame(p, rw, kernel)) {
      goto mmu_allocate_region_error;
    }
  }
  flush_tlb();
  return 1;
mmu_allocate_region_error:
  mmu_free_address_range(ptr, n, pd);
  return 0;
}

void *mmu_map_user_frames(void *const ptr, size_t s) {
  void *const r = get_free_virtual_memory(s);
  size_t num_pages = s / 0x1000;
  for (size_t i = 0; i <= num_pages; i++) {
    Page *p = get_page((void *)(r + i * 0x1000), NULL, PAGE_ALLOCATE, 0);
    assert(p);
    int rw = 1;
    int is_kernel = 0;
    p->present = 1;
    p->rw = rw;
    p->user = !is_kernel;
    p->frame = (uintptr_t)(ptr + i * 0x1000) / 0x1000;
    (void)write_to_frame((uintptr_t)ptr + i * 0x1000, 1);
  }
  return r;
}

void *mmu_map_frames(void *const ptr, size_t s) {
  void *const r = mmu_find_unallocated_virtual_range((void *)0xEF000000, s);
  size_t num_pages = s / 0x1000;
  for (size_t i = 0; i <= num_pages; i++) {
    Page *p = get_page((void *)(r + i * 0x1000), NULL, PAGE_ALLOCATE, 0);
    if (!p) {
      mmu_free_address_range(r, i * 0x1000, NULL);
      return NULL;
    }
    int rw = 1;
    int is_kernel = 1;
    p->present = 1;
    p->rw = rw;
    p->user = !is_kernel;
    p->frame = (uintptr_t)(ptr + i * 0x1000) / 0x1000;
    (void)write_to_frame((uintptr_t)ptr + i * 0x1000, 1);
  }
  return r;
}

int allocate_frame(Page *page, int rw, int is_kernel) {
  if (page->present) {
    klog("Page is already set", 1);
    assert(0);
    return 0;
  }
  u32 frame_address;
  if (!get_free_frames(&frame_address, 1)) {
    return 0;
  }
  assert(write_to_frame(frame_address * 0x1000, 1));

  page->present = 1;
  page->rw = rw;
  page->user = !is_kernel;
  page->frame = frame_address;
  return 1;
}

void mmu_free_pagedirectory(PageDirectory *pd) {
  for (int i = 0; i < 1024; i++) {
    if (!pd->tables[i]) {
      continue;
    }
    if (pd->tables[i] == kernel_directory->tables[i]) {
      continue;
    }

    for (int j = 0; j < 1024; j++) {
      Page *page = &(pd->tables[i]->pages[j]);
      if (!page) {
        continue;
      }
      if (!page->present) {
        continue;
      }
      if (!page->frame) {
        continue;
      }
      (void)write_to_frame(((u32)page->frame) * 0x1000, 0);
    }
    kmalloc_align_free(pd->tables[i], sizeof(PageTable));
    pd->tables[i] = NULL;
  }
  kmalloc_align_free(pd, sizeof(PageDirectory));
}

void mmu_free_address_range(void *ptr, size_t length, PageDirectory *pd) {
  size_t num_pages = (size_t)align_page((void *)length) / PAGE_SIZE;
  for (size_t i = 0; i < num_pages; i++, ptr += PAGE_SIZE) {
    Page *page = get_page(ptr, pd, PAGE_NO_ALLOCATE, 0);
    if (!page) {
      continue;
    }
    if (!page->present) {
      continue;
    }
    if (!page->frame) {
      continue;
    }
    (void)write_to_frame(((u32)page->frame) * 0x1000, 0);
    page->present = 0;
    page->rw = 0;
    page->user = 0;
    page->frame = 0;
  }
}

int mmu_map_physical(void *dst, PageDirectory *d, void *physical,
                     size_t length) {
  void *const dst_orig = dst;
  d = (!d) ? get_active_pagedirectory() : d;
  size_t num_pages = (u32)align_page((void *)length) / 0x1000;
  for (size_t i = 0; i < num_pages; i++, dst += 0x1000, physical += 0x1000) {
    Page *p = get_page(dst, d, PAGE_ALLOCATE, 1);
    if (!p) {
      mmu_free_address_range(dst_orig, i * 0x1000, d);
      return 0;
    }
    p->present = 1;
    p->rw = 1;
    p->user = 1;
    p->frame = (uintptr_t)physical / PAGE_SIZE;
    (void)write_to_frame((uintptr_t)physical, 1);
  }
  return 1;
}

struct PhysVirtMap {
  u32 physical;
  u32 virtual;
  u32 length;
  u8 in_use;
};

struct PhysVirtMap phys_to_virt_map[256] = {0};

void create_physical_to_virtual_mapping(void *physical, void *virtual,
                                        u32 length) {
  for (u16 i = 0; i < 256; i++) {
    if (phys_to_virt_map[i].in_use) {
      continue;
    }
    phys_to_virt_map[i].physical = (u32)physical;
    phys_to_virt_map[i].virtual = (u32) virtual;
    phys_to_virt_map[i].length = length;
    phys_to_virt_map[i].in_use = 1;
    return;
  }
  assert(0);
}

void *physical_to_virtual(void *address) {
  for (u16 i = 0; i < 256; i++) {
    if (!phys_to_virt_map[i].in_use) {
      continue;
    }
    if (phys_to_virt_map[i].physical + phys_to_virt_map[i].length <
        (u32)address) {
      continue;
    }
    if (phys_to_virt_map[i].physical > (u32)address) {
      continue;
    }
    return (void *)phys_to_virt_map[i].virtual + ((uintptr_t)address & 0xFFF);
  }
  assert(0);
  return NULL;
}

void *virtual_to_physical(void *address, PageDirectory *directory) {
  if (!directory) {
    directory = get_active_pagedirectory();
  }
  Page *p = get_page((void *)address, directory, PAGE_NO_ALLOCATE, 0);
  if (!p) {
    return NULL;
  }
  return (void *)((u32)p->frame * 0x1000) + (((uintptr_t)address) & 0xFFF);
}

extern u32 inital_esp;
int move_stack(u32 new_stack_address, u32 size) {
  if (!mmu_allocate_region((void *)(new_stack_address - size), size,
                           MMU_FLAG_KERNEL, NULL)) {
    return 0;
  }

  u32 old_stack_pointer, old_base_pointer;

  old_stack_pointer = get_current_sp();
  old_base_pointer = get_current_sbp();

  u32 new_stack_pointer =
      old_stack_pointer + ((u32)new_stack_address - inital_esp);
  u32 new_base_pointer =
      old_base_pointer + ((u32)new_stack_address - inital_esp);

  // Copy the stack
  memcpy((void *)new_stack_pointer, (void *)old_stack_pointer,
         inital_esp - old_stack_pointer);
  for (u32 i = (u32)new_stack_address; i > new_stack_address - size; i -= 4) {
    u32 tmp = *(u32 *)i;
    if (old_stack_pointer < tmp && tmp < inital_esp) {
      tmp = tmp + (new_stack_address - inital_esp);
      u32 *tmp2 = (u32 *)i;
      *tmp2 = tmp;
    }
  }

  inital_esp = new_stack_pointer;
  // Actually change the stack
  set_sp(new_stack_pointer + 8);
  set_sbp(new_base_pointer);
  return 1;
}

// C strings have a unknown length so it does not makes sense to check
// for a size on the pointer. Instead we check whether the page it
// resides in is accessible to the user.
void *mmu_is_valid_user_c_string(const char *ptr, size_t *size) {
  void *r = (void *)ptr;
  size_t s = 0;
  for (; ((u32)ptr - (u32)r) < 0x1000;) {
    void *page = (void *)((uintptr_t)ptr & (uintptr_t)(~(PAGE_SIZE - 1)));
    if (!mmu_is_valid_userpointer(page, PAGE_SIZE)) {
      return NULL;
    }
    if (!((uintptr_t)ptr & (PAGE_SIZE - 1))) {
      ptr++;
      s++;
    }
    for (; (uintptr_t)ptr & (PAGE_SIZE - 1); ptr++, s++) {
      if (!*ptr) {
        if (size) {
          *size = s;
        }
        return r;
      }
    }
  }
  // String is too long, something has probably gone wrong.
  assert(0);
  return NULL;
}

void *mmu_is_valid_userpointer(const void *ptr, size_t s) {
  uintptr_t t = (uintptr_t)ptr;
  size_t num_pages = (uintptr_t)align_page((void *)s) / 0x1000;
  for (size_t i = 0; i < num_pages; i++, t += 0x1000) {
    Page *page = get_page((void *)t, NULL, PAGE_NO_ALLOCATE, 0);
    if (!page) {
      return NULL;
    }
    if (!page->present) {
      return NULL;
    }
    if (!page->user) {
      return NULL;
    }
  }
  return (void *)ptr;
}

void switch_page_directory(PageDirectory *directory) {
  active_directory = directory;
  set_cr3(directory->physical_address);
}

int create_table(int table_index) {
  if (kernel_directory->tables[table_index]) {
    return 0;
  }
  u32 physical = 0;
  kernel_directory->tables[table_index] =
      (PageTable *)kmalloc_align(sizeof(PageTable), (void **)&physical);
  if (!kernel_directory->tables[table_index]) {
    return 0;
  }
  memset(kernel_directory->tables[table_index], 0, sizeof(PageTable));
  kernel_directory->physical_tables[table_index] = (u32)physical | 0x3;
  return 1;
}

void paging_init(u64 memsize, multiboot_info_t *mb) {
  u32 *cr3 = (void *)get_cr3();
  u32 *virtual = (u32 *)((u32)cr3 + 0xC0000000);

  u32 num_of_frames = 0;

  memset(tmp_small_frames, 0xFF, num_array_frames * sizeof(u32));
  {
    multiboot_memory_map_t *map =
        (multiboot_memory_map_t *)(mb->mmap_addr + 0xc0000000);
    for (size_t length = 0; length < mb->mmap_length;) {
      if (MULTIBOOT_MEMORY_AVAILABLE == map->type) {
        num_of_frames = max(num_of_frames, map->addr + map->len + 0x1000);
        for (size_t i = 0; i < map->len; i += 0x20000) {
          u32 frame = (map->addr + i) / 0x1000;
          if (frame < (num_array_frames * 32)) {
            tmp_small_frames[INDEX_FROM_BIT(frame)] = 0;
          }
        }
      }
      u32 delta = (uintptr_t)map->size + sizeof(map->size);
      map = (multiboot_memory_map_t *)((uintptr_t)map + delta);
      length += delta;
    }
  }
  num_of_frames /= 0x1000;
  num_of_frames /= 32;

  kernel_directory = &real_kernel_directory;
  kernel_directory->physical_address = (u32)cr3;
  for (u32 i = 0; i < 1024; i++) {
    kernel_directory->physical_tables[i] = virtual[i];

    if (!kernel_directory->physical_tables[i]) {
      kernel_directory->tables[i] = NULL;
      continue;
    }

    kernel_directory->tables[i] =
        (PageTable *)(0xC0000000 + (virtual[i] & ~(0xFFF)));

    // Loop through the pages in the table
    PageTable *table = kernel_directory->tables[i];
    (void)write_to_frame(kernel_directory->physical_tables[i], 1);
    for (size_t j = 0; j < 1024; j++) {
      if (!table->pages[j].present) {
        continue;
      }
      // Add the frame to our bitmap to ensure it does not get used by
      // another newly created page.
      (void)write_to_frame(table->pages[j].frame * 0x1000, 1);
    }
  }

  switch_page_directory(kernel_directory);
  // Make null dereferences crash.
  Page *null_page = get_page(NULL, kernel_directory, PAGE_ALLOCATE, 0);
  assert(null_page);
  null_page->present = 0;
  for (int i = 0; i < 25; i++) {
    assert(create_table(771 + i));
  }
  kernel_directory = clone_directory(kernel_directory);
  assert(kernel_directory);

  switch_page_directory(kernel_directory);
  {
    PageDirectory *tmp = clone_directory(kernel_directory);
    assert(tmp);
    switch_page_directory(tmp);
  }
  assert(move_stack(0xA0000000, 0x80000));

  available_memory_kb = memsize;

  num_of_frames = max(num_of_frames, num_array_frames);
  void *new = kmalloc(num_of_frames * sizeof(u32));
  memset(new, 0xFF, num_of_frames * sizeof(u32));
  memcpy(new, tmp_small_frames, num_array_frames * sizeof(u32));
  tmp_small_frames = new;
  {
    multiboot_memory_map_t *map =
        (multiboot_memory_map_t *)(mb->mmap_addr + 0xc0000000);
    for (size_t length = 0; length < mb->mmap_length;) {
      if (MULTIBOOT_MEMORY_AVAILABLE == map->type) {
        for (size_t i = 0; i < map->len; i += 0x20000) {
          u32 frame = (map->addr + i) / 0x1000;
          if (frame > (num_array_frames * 32)) {
            assert(INDEX_FROM_BIT(frame) < num_of_frames);
            tmp_small_frames[INDEX_FROM_BIT(frame)] = 0;
          }
        }
      }
      u32 delta = (uintptr_t)map->size + sizeof(map->size);
      map = (multiboot_memory_map_t *)((uintptr_t)map + delta);
      length += delta;
    }
  }
  num_array_frames = num_of_frames;
}