1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
#include <assert.h>
#include <cpu/idt.h>
#include <cpu/io.h>
#include <drivers/pci.h>
#include <drivers/rtl8139.h>
#include <interrupts.h>
#include <mmu.h>
#include <network/arp.h>
#include <network/ethernet.h>
#define RBSTART 0x30
#define CMD 0x37
#define IMR 0x3C
#define RTL8139_RXBUFFER_SIZE (8192 + 16)
#define TSD0 0x10 // transmit status
#define TSAD0 0x20 // transmit start address
struct PCI_DEVICE rtl8139;
u8 *device_buffer;
u8 *send_buffers[4];
int send_buffers_loop = 0;
struct _INT_PACKET_HEADER {
u8 ROK : 1;
u8 FAE : 1;
u8 CRC : 1;
u8 LONG : 1;
u8 RUNT : 1;
u8 ISE : 1;
u8 reserved : 5;
u8 BAR : 1;
u8 PAM : 1;
u8 MAR : 1;
};
struct PACKET_HEADER {
union {
u16 raw;
struct _INT_PACKET_HEADER data;
};
};
u32 current_packet_read = 0;
void handle_packet(void) {
assert(sizeof(struct _INT_PACKET_HEADER) == sizeof(u16));
for (; 0 == (inb(rtl8139.gen.base_mem_io + 0x37) & 1);) {
u16 *buf = (u16 *)(device_buffer + current_packet_read);
struct PACKET_HEADER packet_header;
packet_header.raw = *buf;
if (packet_header.data.FAE) {
break;
}
if (packet_header.data.CRC) {
break;
}
if (!packet_header.data.ROK) {
break;
}
u16 packet_length = *(buf + 1);
assert(packet_length <= 2048);
u8 packet_buffer[RTL8139_RXBUFFER_SIZE];
if (current_packet_read + packet_length >= RTL8139_RXBUFFER_SIZE) {
u32 end = RTL8139_RXBUFFER_SIZE - current_packet_read;
memcpy(packet_buffer, buf, end);
u32 rest = packet_length - end;
memcpy(packet_buffer + end, device_buffer, rest);
} else {
memcpy(packet_buffer, buf, packet_length);
}
// I have no documentation backing this implementation of updating
// the CBR. It is just a (somewhat)uneducated guess. But it does
// seem to work.
u32 old = current_packet_read;
current_packet_read = (current_packet_read + packet_length + 4 + 3) & (~3);
current_packet_read %= RTL8139_RXBUFFER_SIZE;
outw(rtl8139.gen.base_mem_io + 0x38, current_packet_read - 0x10);
current_packet_read = inw(rtl8139.gen.base_mem_io + 0x3A);
outw(rtl8139.gen.base_mem_io + 0x38, current_packet_read - 0x10);
assert(current_packet_read != old);
handle_ethernet((u8 *)packet_buffer + 4, packet_length);
}
}
void rtl8139_handler(void *regs) {
disable_interrupts();
(void)regs;
u16 status = inw(rtl8139.gen.base_mem_io + 0x3e);
if (status & (1 << 2)) {
}
if (status & (1 << 0)) {
handle_packet();
}
outw(rtl8139.gen.base_mem_io + 0x3E, 0x5);
EOI(0xB);
}
void rtl8139_send_data(u8 *data, u16 data_size) {
if (data_size > 0x1000) {
rtl8139_send_data(data, 0x1000);
data += 0x1000;
data_size -= 0x1000;
return rtl8139_send_data(data, data_size);
}
const struct PCI_DEVICE *device = &rtl8139;
if (send_buffers_loop > 3) {
send_buffers_loop = 0;
}
memcpy(send_buffers[send_buffers_loop], data, data_size);
outl(device->gen.base_mem_io + 0x20 + send_buffers_loop * 4,
(u32)virtual_to_physical(send_buffers[send_buffers_loop], NULL));
outl(device->gen.base_mem_io + 0x10 + send_buffers_loop * 4, data_size);
send_buffers_loop += 1;
}
void get_mac_address(u8 mac[6]) {
u32 base_address = rtl8139.gen.base_mem_io;
// Read the MAC address
u64 mac_address;
{
u32 low_mac = inl(base_address);
u16 high_mac = inw(base_address + 0x4);
mac_address = ((u64)high_mac << 32) | low_mac;
}
memcpy(mac, &mac_address, sizeof(u8[6]));
}
u8 rtl8139_get_transmit_status(u32 base_address) {
u32 status_register = inl(base_address + 0x3E);
if ((status_register >> 3) & 0x1) {
kprintf("transmit error :(\n");
}
u8 status = (status_register >> 2) & 0x1;
outl(base_address + 0x3E, 0x5);
return status;
}
void rtl8139_init(void) {
if (!pci_populate_device_struct(0x10EC, 0x8139, &rtl8139)) {
kprintf("RTL8139 not found :(\n");
return;
}
kprintf("RTL8139 found at bus: %x slot: %x\n", rtl8139.bus, rtl8139.slot);
u8 header_type = (pci_config_read32(&rtl8139, 0, 0xC) >> 16) & 0xFF;
assert(0 == header_type);
u32 base_address = rtl8139.gen.base_mem_io;
u8 interrupt_line = pci_get_interrupt_line(&rtl8139);
// Enable bus mastering
u32 register1 = pci_config_read32(&rtl8139, 0, 0x4);
register1 |= (1 << 2);
pci_config_write32(&rtl8139, 0, 0x4, register1);
// Turning on the device
outb(base_address + 0x52, 0x0);
// Reset the device and clear the RX and TX buffers
outb(base_address + CMD, 0x10);
for (; 0 != (inb(base_address + CMD) & 0x10);)
;
device_buffer = ksbrk(RTL8139_RXBUFFER_SIZE);
memset(device_buffer, 0, RTL8139_RXBUFFER_SIZE);
// Setupt the recieve buffer
u32 rx_buffer = (u32)virtual_to_physical(device_buffer, NULL);
outl(base_address + RBSTART, rx_buffer);
// Set IMR + ISR
// outw(base_address + IMR, (1 << 2) | (1 << 3) | (1 << 0));
outw(base_address + IMR, (1 << 2) | (1 << 0));
// Set transmit and reciever enable
outb(base_address + 0x37, (1 << 2) | (1 << 3));
// Configure the recieve buffer
outl(base_address + 0x44,
0xf); // 0xf is AB+AM+APM+AAP
install_handler((interrupt_handler)rtl8139_handler,
INT_32_INTERRUPT_GATE(0x3), 0x20 + interrupt_line);
for (int i = 0; i < 4; i++) {
send_buffers[i] = ksbrk(0x1000);
}
}
|