summaryrefslogtreecommitdiff
path: root/kernel/kmalloc.c
blob: 8a674f59b91896b14c746bc668d1fcb1a43be960 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <assert.h>
#include <kmalloc.h>
#include <ksbrk.h>
#include <math.h>
#include <random.h>
#define NEW_ALLOC_SIZE 0x20000

#define IS_FREE (1 << 0)
#define IS_FINAL (1 << 1)

typedef struct MallocHeader {
  u64 magic;
  u32 size;
  u8 flags;
  struct MallocHeader *n;
} MallocHeader;

u64 delta_page(u64 a) { return 0x1000 - (a % 0x1000); }

MallocHeader *head = NULL;
MallocHeader *final = NULL;
u32 total_heap_size = 0;

int init_heap(void) {
  head = (MallocHeader *)ksbrk(NEW_ALLOC_SIZE);
  total_heap_size += NEW_ALLOC_SIZE - sizeof(MallocHeader);
  head->magic = 0xdde51ab9410268b1;
  head->size = NEW_ALLOC_SIZE - sizeof(MallocHeader);
  head->flags = IS_FREE | IS_FINAL;
  head->n = NULL;
  final = head;
  return 1;
}

int add_heap_memory(size_t min_desired) {
  min_desired += sizeof(MallocHeader) + 0x1000;
  size_t allocation_size = max(min_desired, NEW_ALLOC_SIZE);
  allocation_size += delta_page(allocation_size);
  void *p;
  if ((void *)(-1) == (p = (void *)ksbrk(allocation_size))) {
    return 0;
  }
  total_heap_size += allocation_size - sizeof(MallocHeader);
  void *e = final;
  e = (void *)((u32)e + final->size);
  if (p == e) {
    final->size += allocation_size - sizeof(MallocHeader);
    return 1;
  }
  MallocHeader *new_entry = p;
  new_entry->size = allocation_size - sizeof(MallocHeader);
  new_entry->flags = IS_FREE | IS_FINAL;
  new_entry->n = NULL;
  new_entry->magic = 0xdde51ab9410268b1;
  final->n = new_entry;
  final = new_entry;
  return 1;
}

MallocHeader *next_header(MallocHeader *a) {
  assert(a->magic == 0xdde51ab9410268b1);
  if (a->n) {
    assert(a->n->magic == 0xdde51ab9410268b1);
    return a->n;
  }
  return NULL;
}

MallocHeader *next_close_header(MallocHeader *a) {
  if (!a) {
    kprintf("next close header fail\n");
    for (;;)
      ;
  }
  if (a->flags & IS_FINAL)
    return NULL;
  return next_header(a);
}

MallocHeader *find_free_entry(u32 s) {
  // A new header is required as well as the newly allocated chunk
  s += sizeof(MallocHeader);
  if (!head)
    init_heap();
  MallocHeader *p = head;
  for (; p; p = next_header(p)) {
    assert(p->magic == 0xdde51ab9410268b1);
    if (!(p->flags & IS_FREE))
      continue;
    u64 required_size = s;
    if (p->size < required_size)
      continue;
    return p;
  }
  return NULL;
}

void merge_headers(MallocHeader *b) {
  if (!(b->flags & IS_FREE))
    return;

  MallocHeader *n = next_close_header(b);
  if (!n)
    return;

  if (!(n->flags & IS_FREE))
    return;

  b->size += n->size;
  b->flags |= n->flags & IS_FINAL;
  b->n = n->n;
  if (n == final)
    final = b;
}

void *kmalloc(size_t s) {
  size_t n = s;
  MallocHeader *free_entry = find_free_entry(s);
  if (!free_entry) {
    if (!add_heap_memory(s)) {
      klog("Ran out of memory.", LOG_ERROR);
      assert(0);
      return NULL;
    }
    return kmalloc(s);
  }

  void *rc = (void *)(free_entry + 1);

  // Create a new header
  MallocHeader *new_entry = (MallocHeader *)((uintptr_t)rc + n);
  new_entry->flags = free_entry->flags;
  new_entry->n = free_entry->n;
  new_entry->size = free_entry->size - n - sizeof(MallocHeader);
  new_entry->magic = 0xdde51ab9410268b1;

  if (free_entry == final)
    final = new_entry;
  merge_headers(new_entry);

  // Modify the free entry
  free_entry->size = n;
  free_entry->flags = 0;
  free_entry->n = new_entry;
  free_entry->magic = 0xdde51ab9410268b1;
  get_fast_insecure_random((void *)rc, s);
  return rc;
}

#define HEAP 0x00E00000
#define PHYS 0x403000

void *latest = NULL;
u64 left = 0;

void *kmalloc_eternal_physical_align(size_t s, void **physical) {
  void *return_address = ksbrk(s);
  if (physical) {
    if (0 == get_active_pagedirectory())
      *physical =
          (void *)((uintptr_t)return_address - (0xC0000000 + PHYS) + HEAP);
    else
      *physical = (void *)virtual_to_physical(return_address, 0);
  }
  memset(return_address, 0, 0x1000);
  return return_address;
}

void *kmalloc_eternal_align(size_t s) {
  return kmalloc_eternal_physical_align(s, NULL);
}

void *kmalloc_eternal(size_t s) { return kmalloc_eternal_align(s); }

size_t get_mem_size(void *ptr) {
  if (!ptr)
    return 0;
  return ((MallocHeader *)((uintptr_t)ptr - sizeof(MallocHeader)))->size;
}

void *krealloc(void *ptr, size_t size) {
  void *rc = kmalloc(size);
  if (!rc)
    return NULL;
  if (!ptr)
    return rc;
  size_t l = get_mem_size(ptr);
  size_t to_copy = min(l, size);
  memcpy(rc, ptr, to_copy);
  //  kfree(ptr);
  return rc;
}

// This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
// if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
#define MUL_NO_OVERFLOW ((size_t)1 << (sizeof(size_t) * 4))

void *kreallocarray(void *ptr, size_t nmemb, size_t size) {
  if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && nmemb > 0 &&
      SIZE_MAX / nmemb < size) {
    return NULL;
  }

  return krealloc(ptr, nmemb * size);
}

void *kallocarray(size_t nmemb, size_t size) {
  return kreallocarray(NULL, nmemb, size);
}

void *kcalloc(size_t nelem, size_t elsize) {
  void *rc = kallocarray(nelem, elsize);
  if (!rc)
    return NULL;
  memset(rc, 0, nelem * elsize);
  return rc;
}

void kfree(void *p) {
  if (!p)
    return;
  // FIXME: This assumes that p is at the start of a allocated area.
  // Could this be avoided in a simple way?
  MallocHeader *h = (MallocHeader *)((uintptr_t)p - sizeof(MallocHeader));
  assert(h->magic == 0xdde51ab9410268b1);
  if (h->flags & IS_FREE)
    return;

  h->flags |= IS_FREE;
  merge_headers(h);
}